If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-52x-128=0
a = 4; b = -52; c = -128;
Δ = b2-4ac
Δ = -522-4·4·(-128)
Δ = 4752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4752}=\sqrt{144*33}=\sqrt{144}*\sqrt{33}=12\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-12\sqrt{33}}{2*4}=\frac{52-12\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+12\sqrt{33}}{2*4}=\frac{52+12\sqrt{33}}{8} $
| (l+42)+(1)=138 | | 1x-24=-9x+1 | | 3=1+v/6 | | 37-3(2x+5)=14-4x | | 68=-2(2-6p) | | 4.58+(-2.08)=y | | d+5/18=7/18 | | 3+5/7z=29 | | 4×+2y=7 | | 2x-9+5x+14=180 | | 8/x-1=24/x+1 | | 1/2b=M | | 3.5b-7.6=6.5b+7.4 | | 9(v+9)=39-(-6v) | | 12=r/4+10 | | -4.5=-0,5(x-7.1 | | 22/h=33/30 | | p/2=11;p= | | -18=3(u-3)+5u | | 4n-305=83 | | x+5/2x-4=-3 | | 3(y+6)=21 | | 1/5=p/15 | | 5x+2=(x-3)=-9+5x+3 | | -1=#x+1 | | 1/2m=92,m= | | -6(1+2x)=-78 | | 3(2x+4)=x–13 | | |3x-1|=13 | | 5.2k+8+1.3k=2.5k+40 | | 5(3x-3)+2x-8=3(3x-5) | | -5=5.5+a |